DataStore provides SQL-style query building methods that compile to optimized SQL queries. All operations are lazy until results are needed.
Query Methods Overview
| Method | SQL Equivalent | Description |
|---|
select(*cols) | SELECT cols | Select columns |
filter(cond) | WHERE cond | Filter rows |
where(cond) | WHERE cond | Alias for filter |
sort(*cols) | ORDER BY cols | Sort rows |
orderby(*cols) | ORDER BY cols | Alias for sort |
limit(n) | LIMIT n | Limit rows |
offset(n) | OFFSET n | Skip rows |
distinct() | DISTINCT | Remove duplicates |
groupby(*cols) | GROUP BY cols | Group rows |
having(cond) | HAVING cond | Filter groups |
join(right, ...) | JOIN | Join DataStores |
union(other) | UNION | Combine results |
Selection
select
Select specific columns from the DataStore.
select(*fields: Union[str, Expression]) -> DataStore
Examples:
from chdb.datastore import DataStore
ds = DataStore.from_file("employees.csv")
# Select by column names
result = ds.select('name', 'age', 'salary')
# Select all columns
result = ds.select('*')
# Select with expressions
result = ds.select(
'name',
(ds['salary'] * 12).as_('annual_salary'),
ds['age'].as_('employee_age')
)
# Equivalent pandas style
result = ds[['name', 'age', 'salary']]
Filtering
filter / where
Filter rows based on conditions. Both methods are equivalent.
filter(condition) -> DataStore
where(condition) -> DataStore # alias
Examples:
ds = DataStore.from_file("employees.csv")
# Single condition
result = ds.filter(ds['age'] > 30)
result = ds.where(ds['salary'] >= 50000)
# Multiple conditions (AND)
result = ds.filter((ds['age'] > 30) & (ds['department'] == 'Engineering'))
# Multiple conditions (OR)
result = ds.filter((ds['city'] == 'NYC') | (ds['city'] == 'LA'))
# NOT condition
result = ds.filter(~(ds['status'] == 'inactive'))
# String conditions
result = ds.filter(ds['name'].str.contains('John'))
result = ds.filter(ds['email'].str.endswith('@company.com'))
# NULL checks
result = ds.filter(ds['manager_id'].notnull())
result = ds.filter(ds['bonus'].isnull())
# IN condition
result = ds.filter(ds['department'].isin(['Engineering', 'Product', 'Design']))
# BETWEEN condition
result = ds.filter(ds['salary'].between(50000, 100000))
# Chained filters (AND)
result = (ds
.filter(ds['age'] > 25)
.filter(ds['salary'] > 50000)
.filter(ds['city'] == 'NYC')
)
Pandas-Style Filtering
# Boolean indexing (equivalent to filter)
result = ds[ds['age'] > 30]
result = ds[(ds['age'] > 30) & (ds['salary'] > 50000)]
# Query method
result = ds.query('age > 30 and salary > 50000')
Sorting
sort / orderby
Sort rows by one or more columns.
sort(*fields, ascending=True) -> DataStore
orderby(*fields, ascending=True) -> DataStore # alias
Examples:
ds = DataStore.from_file("employees.csv")
# Single column ascending
result = ds.sort('name')
# Single column descending
result = ds.sort('salary', ascending=False)
# Multiple columns
result = ds.sort('department', 'salary')
# Mixed order (use list for ascending parameter)
result = ds.sort('department', 'salary', ascending=[True, False])
# Pandas style
result = ds.sort_values('salary', ascending=False)
result = ds.sort_values(['department', 'salary'], ascending=[True, False])
Limiting and Pagination
limit
Limit the number of rows returned.
limit(n: int) -> DataStore
offset
Skip the first n rows.
offset(n: int) -> DataStore
Examples:
ds = DataStore.from_file("employees.csv")
# First 10 rows
result = ds.limit(10)
# Skip first 100, take next 50
result = ds.offset(100).limit(50)
# Pandas style
result = ds.head(10)
result = ds.tail(10)
result = ds.iloc[100:150]
Distinct
distinct
Remove duplicate rows.
distinct(subset=None, keep='first') -> DataStore
Examples:
ds = DataStore.from_file("events.csv")
# Remove all duplicate rows
result = ds.distinct()
# Remove duplicates based on specific columns
result = ds.distinct(subset=['user_id', 'event_type'])
# Pandas style
result = ds.drop_duplicates()
result = ds.drop_duplicates(subset=['user_id'])
Grouping
groupby
Group rows by one or more columns. Returns a LazyGroupBy object.
groupby(*fields, sort=True, as_index=True, dropna=True) -> LazyGroupBy
Examples:
ds = DataStore.from_file("sales.csv")
# Group by single column
by_region = ds.groupby('region')
# Group by multiple columns
by_region_product = ds.groupby('region', 'product')
# Aggregation after groupby
result = ds.groupby('region')['amount'].sum()
result = ds.groupby('region').agg({'amount': 'sum', 'quantity': 'mean'})
# Multiple aggregations
result = ds.groupby('category').agg({
'price': ['min', 'max', 'mean'],
'quantity': 'sum'
})
# Named aggregation
result = ds.groupby('region').agg(
total_amount=('amount', 'sum'),
avg_quantity=('quantity', 'mean'),
order_count=('order_id', 'count')
)
having
Filter groups after aggregation.
having(condition: Union[Condition, str]) -> DataStore
Examples:
# Filter groups with total > 10000
result = (ds
.groupby('region')
.agg({'amount': 'sum'})
.having(ds['sum'] > 10000)
)
# Using SQL-style having
result = (ds
.select('region', 'SUM(amount) as total')
.groupby('region')
.having('total > 10000')
)
Joining
join
Join two DataStores.
join(right, on=None, how='inner', left_on=None, right_on=None) -> DataStore
Parameters:
| Parameter | Type | Default | Description |
|---|
right | DataStore | required | Right DataStore to join |
on | str/list | None | Column(s) to join on |
how | str | 'inner' | Join type: 'inner', 'left', 'right', 'outer' |
left_on | str/list | None | Left join column(s) |
right_on | str/list | None | Right join column(s) |
Examples:
employees = DataStore.from_file("employees.csv")
departments = DataStore.from_file("departments.csv")
# Inner join on single column
result = employees.join(departments, on='dept_id')
# Left join
result = employees.join(departments, on='dept_id', how='left')
# Join on different column names
result = employees.join(
departments,
left_on='department_id',
right_on='id',
how='inner'
)
# Pandas style merge
from chdb import datastore as pd
result = pd.merge(employees, departments, on='dept_id')
result = pd.merge(employees, departments, left_on='department_id', right_on='id')
union
Combine results from two DataStores.
union(other, all=False) -> DataStore
Examples:
ds1 = DataStore.from_file("sales_2023.csv")
ds2 = DataStore.from_file("sales_2024.csv")
# UNION (removes duplicates)
result = ds1.union(ds2)
# UNION ALL (keeps duplicates)
result = ds1.union(ds2, all=True)
# Pandas style
from chdb import datastore as pd
result = pd.concat([ds1, ds2])
Conditional Expressions
when
Create CASE WHEN expressions.
when(condition, value) -> CaseWhenBuilder
Examples:
ds = DataStore.from_file("employees.csv")
# Simple case-when
result = ds.select(
'name',
ds.when(ds['salary'] > 100000, 'High')
.when(ds['salary'] > 50000, 'Medium')
.otherwise('Low')
.as_('salary_tier')
)
# With column assignment
ds['salary_tier'] = (
ds.when(ds['salary'] > 100000, 'High')
.when(ds['salary'] > 50000, 'Medium')
.otherwise('Low')
)
Raw SQL
run_sql / sql
Execute raw SQL queries.
run_sql(query: str) -> DataStore
sql(query: str) -> DataStore # alias
Examples:
from chdb.datastore import DataStore
# Execute raw SQL
result = DataStore().sql("""
SELECT
department,
COUNT(*) as count,
AVG(salary) as avg_salary
FROM file('employees.csv', 'CSVWithNames')
WHERE status = 'active'
GROUP BY department
HAVING count > 5
ORDER BY avg_salary DESC
LIMIT 10
""")
# SQL on existing DataStore
ds = DataStore.from_file("employees.csv")
result = ds.sql("SELECT * FROM __table__ WHERE age > 30")
to_sql
View the generated SQL without executing.
Examples:
ds = DataStore.from_file("employees.csv")
query = (ds
.filter(ds['age'] > 30)
.groupby('department')
.agg({'salary': 'mean'})
.sort('mean', ascending=False)
)
print(query.to_sql())
# Output:
# SELECT department, AVG(salary) AS mean
# FROM file('employees.csv', 'CSVWithNames')
# WHERE age > 30
# GROUP BY department
# ORDER BY mean DESC
Method Chaining
All query methods support fluent chaining:
from chdb.datastore import DataStore
ds = DataStore.from_file("sales.csv")
result = (ds
.select('region', 'product', 'amount', 'date')
.filter(ds['date'] >= '2024-01-01')
.filter(ds['amount'] > 100)
.groupby('region', 'product')
.agg({
'amount': ['sum', 'mean'],
'date': 'count'
})
.having(ds['sum'] > 10000)
.sort('sum', ascending=False)
.limit(20)
)
# View SQL
print(result.to_sql())
# Execute
df = result.to_df()
Aliasing
as_
Set an alias for a column or subquery.
as_(alias: str) -> DataStore
Examples:
# Column alias
result = ds.select(
ds['name'].as_('employee_name'),
(ds['salary'] * 12).as_('annual_salary')
)
# Subquery alias
subquery = ds.filter(ds['age'] > 30).as_('senior_employees')