The DataStore profiler helps you measure execution time and identify performance bottlenecks.
Quick Start
from chdb import datastore as pd
from chdb.datastore.config import config, get_profiler
# Enable profiling
config.enable_profiling()
# Run your operations
ds = pd.read_csv("large_data.csv")
result = (ds
.filter(ds['amount'] > 100)
.groupby('category')
.agg({'amount': 'sum'})
.sort('sum', ascending=False)
.head(10)
.to_df()
)
# View report
profiler = get_profiler()
print(profiler.report())
Enabling Profiling
from chdb.datastore.config import config
# Enable profiling
config.enable_profiling()
# Disable profiling
config.disable_profiling()
# Check if profiling is enabled
print(config.profiling_enabled) # True or False
Profiler API
Getting the Profiler
from chdb.datastore.config import get_profiler
profiler = get_profiler()
report()
Display a performance report.
profiler.report(min_duration_ms=0.1)
Parameters:
| Parameter | Type | Default | Description |
|---|
min_duration_ms | float | 0.1 | Only show steps >= this duration |
Example output:
======================================================================
EXECUTION PROFILE
======================================================================
45.79ms (100.0%) Total Execution
23.25ms ( 50.8%) Query Planning [ops_count=2]
22.29ms ( 48.7%) SQL Segment 1 [ops=2]
20.48ms ( 91.9%) SQL Execution
1.74ms ( 7.8%) Result to DataFrame
----------------------------------------------------------------------
TOTAL: 45.79ms
======================================================================
The report shows:
- Duration in milliseconds for each step
- Percentage of parent/total time
- Hierarchical nesting of operations
- Metadata for each step (e.g.,
ops_count, ops)
step()
Manually time a code block.
with profiler.step("custom_operation"):
# Your code here
expensive_operation()
clear()
Clear all profiling data.
summary()
Get a dictionary of step names to durations (ms).
summary = profiler.summary()
for name, duration in summary.items():
print(f"{name}: {duration:.2f}ms")
Example output:
Total Execution: 45.79ms
Total Execution.Cache Check: 0.00ms
Total Execution.Query Planning: 23.25ms
Total Execution.SQL Segment 1: 22.29ms
Total Execution.SQL Segment 1.SQL Execution: 20.48ms
Total Execution.SQL Segment 1.Result to DataFrame: 1.74ms
Understanding the Report
Step Names
| Step Name | Description |
|---|
Total Execution | Overall execution time |
Query Planning | Time spent planning the query |
SQL Segment N | Execution of SQL segment N |
SQL Execution | Actual SQL query execution |
Result to DataFrame | Converting results to pandas |
Cache Check | Checking query cache |
Cache Write | Writing results to cache |
Duration
- Planning steps (Query Planning): Usually fast
- Execution steps (SQL Execution): Where actual work happens
- Transfer steps (Result to DataFrame): Converting data to pandas
Identifying Bottlenecks
======================================================================
EXECUTION PROFILE
======================================================================
200.50ms (100.0%) Total Execution
10.25ms ( 5.1%) Query Planning [ops_count=4]
190.00ms ( 94.8%) SQL Segment 1 [ops=4]
185.00ms ( 97.4%) SQL Execution <- Main bottleneck
5.00ms ( 2.6%) Result to DataFrame
----------------------------------------------------------------------
TOTAL: 200.50ms
======================================================================
Profiling Patterns
Profile a Single Query
config.enable_profiling()
profiler = get_profiler()
profiler.clear() # Clear previous data
# Run query
result = ds.filter(...).groupby(...).agg(...).to_df()
# View this query's profile
print(profiler.report())
Profile Multiple Queries
config.enable_profiling()
profiler = get_profiler()
profiler.clear()
# Query 1
with profiler.step("Query 1"):
result1 = query1.to_df()
# Query 2
with profiler.step("Query 2"):
result2 = query2.to_df()
print(profiler.report())
Compare Approaches
profiler = get_profiler()
# Approach 1: Filter then groupby
profiler.clear()
with profiler.step("filter_then_groupby"):
result1 = ds.filter(ds['x'] > 10).groupby('y').sum().to_df()
summary1 = profiler.summary()
time1 = summary1.get('filter_then_groupby', 0)
# Approach 2: Groupby then filter
profiler.clear()
with profiler.step("groupby_then_filter"):
result2 = ds.groupby('y').sum().filter(ds['x'] > 10).to_df()
summary2 = profiler.summary()
time2 = summary2.get('groupby_then_filter', 0)
print(f"Approach 1: {time1:.2f}ms")
print(f"Approach 2: {time2:.2f}ms")
print(f"Winner: {'Approach 1' if time1 < time2 else 'Approach 2'}")
Optimization Tips
1. Check SQL Execution Time
If SQL execution is the bottleneck:
- Add more filters to reduce data
- Use Parquet instead of CSV
- Check for proper indexes (for database sources)
2. Check I/O Time
If read_csv or read_parquet is the bottleneck:
- Use Parquet (columnar, compressed)
- Read only needed columns
- Filter at source if possible
3. Check Data Transfer
If to_df is slow:
- Result set may be too large
- Add more filters or limit
- Use
head() for previewing
4. Compare Engines
from chdb.datastore.config import config
# Profile with chdb
config.use_chdb()
profiler.clear()
result_chdb = query.to_df()
time_chdb = profiler.total_duration_ms
# Profile with pandas
config.use_pandas()
profiler.clear()
result_pandas = query.to_df()
time_pandas = profiler.total_duration_ms
print(f"chdb: {time_chdb:.2f}ms")
print(f"pandas: {time_pandas:.2f}ms")
Best Practices
1. Profile Before Optimizing
# Don't guess - measure!
config.enable_profiling()
result = your_query.to_df()
print(get_profiler().report())
2. Clear Between Tests
profiler.clear() # Clear previous data
# Run test
print(profiler.report())
3. Use min_duration_ms for Focus
# Only show operations >= 100ms
profiler.report(min_duration_ms=100)
4. Profile Representative Data
# Profile with real-world data sizes
# Small test data may not show real bottlenecks
5. Disable in Production
# Development
config.enable_profiling()
# Production
config.set_profiling_enabled(False) # Avoid overhead
Example: Full Profiling Session
from chdb import datastore as pd
from chdb.datastore.config import config, get_profiler
# Setup
config.enable_profiling()
config.enable_debug() # Also see what's happening
profiler = get_profiler()
# Load data
profiler.clear()
print("=== Loading Data ===")
ds = pd.read_csv("sales_2024.csv") # 10M rows
print(profiler.report())
# Query 1: Simple filter
profiler.clear()
print("\n=== Query 1: Simple Filter ===")
result1 = ds.filter(ds['amount'] > 1000).to_df()
print(profiler.report())
# Query 2: Complex aggregation
profiler.clear()
print("\n=== Query 2: Complex Aggregation ===")
result2 = (ds
.filter(ds['amount'] > 100)
.groupby('region', 'category')
.agg({
'amount': ['sum', 'mean', 'count'],
'quantity': 'sum'
})
.sort('sum', ascending=False)
.head(20)
.to_df()
)
print(profiler.report())
# Summary
print("\n=== Summary ===")
print(f"Query 1: {len(result1)} rows")
print(f"Query 2: {len(result2)} rows")